Comments on “Dual methods for nonconvex spectrum optimization of multicarrier systems”

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comments on "Dual methods for nonconvex spectrum optimization of multicarrier systems"

Yu and Liu’s strong duality theorem under the time-sharing property requires the Slater condition to hold for the considered general nonconvex problem, what is satisfied for the specific application. We further extend the scope of the theorem under Ky Fan convexity which is slightly weaker than Yu&Lui’s time-sharing property.

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

Nonconvex Optimization for Communication Systems

Convex optimization has provided both a powerful tool and an intriguing mentality to the analysis and design of communication systems over the last few years. A main challenge today is on nonconvex problems in these application. This paper presents an overview of some of the important nonconvex optimization problems in point-to-point and networked communication systems. Three typical applicatio...

متن کامل

Spectrum optimization in multi-user multi-carrier systems with iterative convex and nonconvex approximation methods

Several practical multi-user multi-carrier communication systems are characterized by a multi-carrier interference channel system model where the interference is treated as noise. For these systems, spectrum optimization is a promising means to mitigate interference. This however corresponds to a challenging nonconvex optimization problem. Existing iterative convex approximation (ICA) methods c...

متن کامل

Fast Stochastic Methods for Nonsmooth Nonconvex Optimization

We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonconvex part is smooth and the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tack...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optimization Letters

سال: 2008

ISSN: 1862-4472,1862-4480

DOI: 10.1007/s11590-008-0076-7